Categorías
Análisis de contenido Reconocimiento de datos Teorización Uncategorized

Pensar los datos cuantificados: #ScholarStrike en el contexto de la COVID-19

Si bien la pandemia de COVID-19 impuso por primera vez en años un contexto global compartido, este pronto comenzó a convivir con la coyuntura local de cada país. Twitter, como es esperable, no fue ajeno a ello, y pronto comenzaron a surgir hashtags específicos que deban cuenta de ese proceso de localización de la pandemia (por ejemplo, en Argentina, #coronacrisis, en referencia al derrumbe financiero a consecuencia de una larga cuarentena y una débil economía heredada del periodo anterior). No obstante, otros hashtags menos representativos de la situación sanitaria pronto comenzaron a resignificarse, e incluso a surgir, dentro de este contexto. Para los Estados Unidos, este fue el caso de #BlackLivesMatter y #ScholarStrike.

En este post buscamos investigar en las particularidades de este último, siguiendo la línea de reflexiones que propusimos en nuestro post anterior (What can academic journals tell us about COVID-19 and Education?), es decir, utilizar plataformas de análisis cuantitativo (en el post anterior usamos AVOBMAT ) desarrolladas por terceros para realizar un ejercicio de minería de datos, a la vez que evaluamos las funcionalidades y limitaciones de la herramienta.

El caso de #ScholarStrike nos pareció ideal para trabajar con una herramienta “a medida”, ya que es un hashtag que tuvo fuerte presencia durante un tiempo acotado (previo a la iniciativa, durante la misma y algunos días posteriores). 

Para quienes no están al tanto de las noticias del Norte, Scholar Strike fue un movimiento comunitario en las universidades que buscó reconocer el creciente número de muertes de Afroamericanos y otras minorías por el uso excesivo de la violencia y la fuerza por parte de la policía. Durante dos días, del 8 al 9 de septiembre, profesores, personal universitario, estudiantes e incluso administrativos se apartaron de sus deberes y clases regulares para participar en clases (en algunos casos, abiertas) sobre la injusticia racial, la vigilancia policial y el racismo en Estados Unidos. Las universidades de Canadá realizaron su propia Scholar Strike del 9 al 10 de septiembre. En el sitio oficial del movimiento, se puede leer más sobre los fundamentos de Scholar Strike, asi como en su canal de YouTube, donde diferentes académicos colocaron clases abiertas y recursos. El sitio oficial también contiene una lista de recursos textuales y audiovisuales que pueden ser utilizados en las clases así como información sobre la cobertura de Scholar Strike en los medios. Scholar Strike Canada también creó un sitio web oficial, que incluye los detalles del programa de actividades, recursos y links a organizaciones que apoyaron la iniciativa. 

Nuestro objetivo fue hacer minería sobre este hashtag en Twitter, buscando asimismo coincidencias terminológicas con otros directamente relacionados, como #BlackLivesMatter, y con algunos más ligados a la crisis del coronavirus.

Para ello, echamos mano de dos plataformas comerciales de minería de Twitter: Brand24 y Audiense. Evidentemente, estas herramientas no son académicas, pero, como veremos mas adelante, se adaptan perfectamente al tipo de trabajo que queremos hacer con relación al análisis de datos cuantificados.

El sitio oficial de Brand24 describe a la plataforma como una “herramienta de monitoreo de redes sociales y páginas web con potentes posibilidades de análisis.”  (Brand24 is a web and social media monitoring tool with powerful analytics). La herramienta busca las palabras clave  que el usuario proporciona y las analiza en varios niveles. La herramienta está principalmente orientada para análisis de marcas y el uso de esos datos en marketing digital. Por otra parte, Audiense, según describe su página oficial, “proporciona información detallada sobre cualquier audiencia para impulsar estrategia de marketing social con datos procesables y enriquecidos en tiempo real con el fin de ofrecer resultados comerciales genuinos” . Cabe destacar, como puede verse por las descripciones oficiales de las herramientas, que ambas han sido desarrolladas para ser utilizadas en proyectos empresariales, aunque se adaptan, claro está, a cualquier tipo de búsqueda en redes sociales.

La labor con estas plataformas es radicalmente opuesta a la que venimos realizando en este proyecto. Si en la interacción con nuestra base de datos, establecemos un proceso de filtro y curaduría de los datos, para luego proceder al análisis a través de distintas herramientas y métodos (frecuencia de términos, topic modeling), aquí son pocos los filtros que podemos dar a la plataforma (elegir las redes, establecer variables de días) y es la plataforma la que arroja diariamente una serie de resultados que son asimismo interpretados en un análisis automático en la forma de porcentajes y visualizaciones e infografías.

Como decíamos, usamos las plataformas Brand24 y Audiense en su versión trial de 7 días. A grandes rasgos, comparativamente, Brand24 es una plataforma bastante superadora a Audiense. Al introducir las mismas búsquedas, lo primero que notamos fue que Audiense presenta un sesgo altísimo frente a la información. Todos los tweets que levantamos con el hashtag #ScholarStrike eran negativos. Todos provenían de seguidores de Trump o del presidente mismo.

Figura 1. Informe de Audiense sobre #ScholarStrike.

Brand24, por el contrario, arrojó los datos de una forma más neutral. Como decíamos, a la búsqueda, que automáticamente al finalizar envía un email al administrador del proyecto, le sigue la posibilidad de descarga de un informe. No se puede trabajar sobre los datos. Se cree en los datos y las infografías o se los descarta.

Veamos, a continuación, qué narrativa nos ofrece esta última plataforma para la búsqueda #ScholarStrike.

La primera búsqueda del hashtag la hicimos el día 13 y Brand24 realizó la búsqueda retrospectiva en los últimos 30 días (14 Aug 2020 – 13 Sep 2020). A las 24 horas, nos permitió la descarga de un informe y  una infografía. En el primero, podemos ver que, en términos generales, el sentimiento acerca de la huelga fue positivo (44 positivos contra 21 negativos):

Figura 2. Resumen de las menciones de #ScholarStrike en redes sociales en Brand24.

Evidentemente, al ser solo una huelga de días, las menciones solo se producen en ese periodo, pero es notable cómo crecen al tercer día de comenzada la misma:

Figura 3. Gráfico de volumen de menciones de #ScholarStrike en redes sociales a lo largo del mes de septiembre.

Luego, la plataforma nos arroja una visualización de los términos más destacados de todas las redes sociales.

Figura 4. Conjunto de términos más nombrados en redes sociales dentro del contexto de discusión de #ScholarStrike.

Con justa razón, professor, teaching, son términos clave, ya que la huelga se dio en ese ámbito, pero, como decíamos en un principio, el entrelazamiento con el movimiento Black Lives Matter es visible el términos como racial, issues, september, police, injustice, black.

Es interesante, aunque esperable, dado su uso político, que de las dos redes sociales más populares, Facebook y Twitter, es la segunda la que se destaca. Otro término destacado es Butler. Lo interesante aqui es que, fuera de contexto, Butler podria asociarse a la filósofa y teórica Judith Butler, quien ha tenido una intervención activa en el movimiento BLM,  a través de publicaciones en periódicos, y en redes sociales, y ha sido muy citada a partir de su tesis de la performatividad del género, tal y como lo muestran estas publicaciones: https://opinionator.blogs.nytimes.com/2015/01/12/whats-wrong-with-all-lives-matter/ o

https://iai.tv/articles/speaking-the-change-we-seek-judith-butler-performative-self-auid-1580. Sin embargo, este término hace referencia a Aethna Butler, profesora en estudios religiosos y estudios africanos y afro-americanos de la Universidad de Pensilvania, quien fue una de las organizadoras del Scholar Strike: https://www.insightintodiversity.com/professors-lead-a-nationwide-scholar-strike-for-racial-justice/ 

A continuación, la plataforma nos muestra los usuarios más activos y los más recientes en cuanto a su actividad en Twitter:

Figura 5. Menciones más populares y más recientes en Twitter con sus usuarios.

Resulta difícil saber si la herramienta está midiendo a los más populares por cantidad de Tweets o por retweets. Por lo que se ve en las imágenes siguientes, parece que la medición se hace a partir de las menciones y estas son las que miden el grado de influencia de un usuario en Twitter (figs 6 y 7).

No obstante, lo que más nos llama la atención es el usuario ISASaxonists, un grupo de medievalistas especialistas en lit medieval anglosajona (fig 5).

Figura 6. Perfiles públicos más activos en Twitter relacionados con #ScholarStrike.

Figura 7. Perfiles públicos más influyentes en Twitter.

En último lugar la plataforma muestra los hashtags más usados (y relacionados entre sí):

Figura 8. Hashtags más mencionados en Twitter, a partir de la búsqueda #ScholarStrike.

#ScholarStrike, #BlackLivesMatter, #covid son hashtags esperables. Una vez más, lo interesante aquí es el hashtag medievaltwitter, en 13 lugar, que, aunque la plataforma no lo explicita, debe estar relacionado, por ejemplo, con usuario ISASaxonists. De ser el caso, sería interesante pensar si tanto el hashtag medievaltwitter como los tweets del usuario ISASaxonists están relacionados con las acusaciones que ocurrieron en 2019 a la Sociedad Internacional Anglo-Sajona por su inhabilidad de dar cuenta de problemas de racismo, sexismo, diversidad e inclusión dentro de la misma. Parte de esta discusión fue publicada en revistas académicas en Estados Unidos durante septiembre de 2019:

https://www.insidehighered.com/news/2019/09/20/anglo-saxon-studies-group-says-it-will-change-its-name-amid-bigger-complaints-about.

En conclusión, explorar el contexto de #ScholarStrike con la plataform Brand24 nos permitió constatar algunas suposiciones previas (su relación con hashtags como BLM, Covid) pero iluminó otros hashtags menos esperables para un usuario no académico, como #medievaltwitter, y otros que aparecían tímidamente, pero pronto comenzaron a tener más impacto semanas siguientes, con la carrera electoral, como #bidenharris2020.

Gimena del Rio  / Marisol Fila

Categorías
Análisis de contenido Teorización Visualización

¿Qué pueden decirnos las publicaciones académicas sobre el COVID-19 y la Educación?

La aparición del coronavirus ha puesto en nuestro lenguaje cotidiano nuevos términos, como pandemia o infodemia. Este último, de acuerdo a Wikipedia, puede ser definido como: 

“El término infodemia se emplea para referirse a la sobreabundancia de información (ya sea rigurosa o falsa) sobre un tema concreto, como por ejemplo en el caso del coronavirus​. El término se deriva de la unión entre la palabra información y la palabra epidemia. Se relaciona con conceptos similares como fake news o infoxicación, en la medida que la cantidad y exposición de éstos se intensifican.”

Una buena forma de sobrevivir a la infodemia es analizar datos. AVOBMAT (Análisis y visualización de metadatos y textos bibliográficos / Analysis and Visualization of Bibliographic Metadata and Texts – https://avobmat.hu/) es una herramienta de investigación de minería de datos que se diseñó principalmente para la investigación en humanidades digitales. Es un poderoso kit de herramientas digitales para analizar y visualizar metadatos y textos bibliográficos. AVOBMAT agregó un conjunto de datos sobre COVID-19 a su nueva herramienta de investigación de minería de textos. Es un recurso de más de 138,000 artículos académicos (lamentablemente, solo en inglés), que incluye más de 69,000 artículos completos, sobre COVID-19, SARS-CoV-2 y coronavirus relacionados. Pensamos que antes de profundizar en el vasto océano de Twitter para ver qué está sucediendo en relación con la pandemia y la educación (educación superior/universitaria, enseñanza remota/a distancia), debemos construir un marco de referencia que pueda apoyar e informar nuestra hipótesis. Utilizamos AVOBMAT para explorar lo que las publicaciones científicas publicaron entre 2019 y  2020 sobre estos temas.

Primero, hicimos una búsqueda general con Lucene: establecimos un período (2019 y 2020) y elegimos algunas palabras generales como «programa de estudios», «educación» y «coronavirus» (no solo COVID-19, sino todas las enfermedades por coronavirus). La búsqueda nos mostró 298 artículos (por supuesto, todos en inglés): http://dighum.bibl.u-szeged.hu/avobmat-covid/home

Luego, pensamos qué podría decirnos esta búsqueda general en un enfoque más cercano y detallado, aunque aún distante. Elegimos la opción de visualización de WordCloud y este fue el resultado:

Nube de palabras en AVOBMAT

Algo que casi esperábamos, pero que la nube confirmó es la referencia a ciudades y países (Wuhan, Hubei, China, Vellingiri) y a meses específicos (diciembre, febrero, marzo). Teniendo en cuenta que Estados Unidos entró en una situación más crítica en abril, descubrimos la presencia del Oriente. Sin embargo, esto también abre una pregunta sobre otros países como Italia o España e incluso el Reino Unido, donde se estaban pasando por momentos críticos a principios de 2020. Podemos explicar estos resultados argumentando la lenta respuesta de la producción y publicación académica al abordar este nuevo contexto, pero quizás también con un interés no tan alto en los temas que estábamos buscando (programa de estudios, educación, coronavirus).

Sin embargo, la explicación en sí está en el coronavirus, como el SARS-CoV (2002-2003) y el MERS-CoV (2012-hasta el presente). Todos los otros coronavirus atacaron principalmente a países del Este y no del Oeste. Esto explica la presencia en la nube de algunas de las ciudades que mencionamos anteriormente. En realidad, no fue sino hasta marzo de 2020 que algunas revistas sobre educación superior estadounidenses, como Inside Higher Ed y The Chronicle of Higher Ed, comenzaron a publicar artículos que hablaban sobre Covid-19 y educación superior en los Estados Unidos. Publicaciones anteriores del 2020 o incluso en enero y febrero de 2020 hablaban sobre nuevos desafíos en la educación universitaria en China, Corea del Sur o Europa (Italia, España, Reino Unido) (Véase, por ejemplo, la búsqueda que hicimos para la revista Inside Higher Ed)

En definitiva, es realmente interesante que la educación esté en esta nube relacionada con la medicina (atención médica, farmacéuticos, emergencias, cuarentena, transmisión) y, obviamente, con cara, máscara … y Google. Por supuesto, no es solo el cuerpo físico presente aquí sino también términos interesantes como psiquiatra, mental, etc.

Uso y contexto del término educación

Pero finalmente, si hacemos una lectura muy cercana y analizamos los metadatos que obtuvimos en la búsqueda general, podemos encontrar en los artículos que, la mayoría de las veces, el término educación está relacionado con las variables que los investigadores usan para estudiar la enfermedad. Por ejemplo, este es un pasaje en el artículo “A County-level Dataset for Informing the United States’ Response to COVID-19” («Un conjunto de datos a nivel de condado para informar la respuesta de los Estados Unidos a COVID-19») por Benjamin D. Killeen et al (2020), en el que los autores afirman que han utilizado «300 variables que resumen las estimaciones de población, demografía, etnia, vivienda, educación, empleo e ingresos, clima, puntajes de tránsito y métricas relacionadas con el sistema de salud » (“300 variables that summarize population estimates, demographics, ethnicity, housing, education, employment and income, climate, transit scores, and healthcare system-related metrics.” – https://arxiv.org/pdf/2004.00756.pdf)

En otros casos, el término educación está muy relacionado con un Ministerio (en el caso de Irán, el trabajo del Ministerio de Salud y Educación Médica es muy citado (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085938/)

Visualización de revistas académicas que contienen los términos de búsqueda en sus artículos

Por lo tanto, no es fácil entender lo que nos dice esta nube.

Si hacemos una consulta similar con Lucene pero reemplazamos coronavirus con Covid-19, más educación y programa de estudios, encontramos 458 artículos que nos muestran estas palabras:

Nube de palabras con AVOBMAT

Por supuesto, las ciudades (Hubei, Wuhan, China) y los meses (enero, febrero, marzo) todavía están allí. Vemos términos relacionados con enfermedades mentales (psiquiatra, mental), pero la cuarentena ahora comparte semántica con un sinónimo que se ha utilizado ampliamente en los países anglófonos: el encierro (lockdown). Y también tenemos palabras familiares para Google (por ejemplo, Internet) y las nuevas incorporaciones, como Whatsapp, y otros términos relacionados con nuestra nueva vida, como en línea, a distancia y telemedicina.

Sin embargo, ¿qué pasa con la educación, entendida como la enseñanza y el aprendizaje? Detallamos un poco más nuestra búsqueda usando términos como enseñanza, universidades, aprendizaje, estudiantes y COVID-19. Como resultado, obtuvimos 199 artículos en los que estas fueron las palabras más utilizadas:

Nube de palabras con AVOBMAT

El encuentro versus el encierro, moodle, moocs, distancia, los gimnasios nos dieron una imagen muy realista del escenario educativo en estos días. Incluso la visualización de metadatos nos dice que estos temas se abordan desde las Ciencias Médicas, y nos da una imagen detallada de nuestra situación global con el  COVID-19.

Visualización de revistas académicas que contienen los términos de búsqueda en sus artículos

Como sospechábamos, la mayoría de los artículos publicados sobre COVID-19 y los diferentes enfoques sobre temas relacionados con la educación, la educación superior y universitaria, etc., están relacionados con estudios en las ciencias médicas. Por un lado, como se esperaba, esta es una disciplina dominante en un contexto de pandemia, pero también muestra cómo las Ciencias Médicas han mejorado el lento tiempo de la escritura académica. Por supuesto, nos damos cuenta de todas las publicaciones sobre este tema, ya que muchos servicios de recolección de otras latitudes no están incluidos como parte del servicio AVOBMAT. Sin embargo, nos da una idea general para avanzar en nuestro próximo post a un enfoque sobre lo que los tweets dicen sobre estos temas. ¡En breve, más análisis cercano y distante!

Marisol Fila y Gimena del Rio Riande