A finales de abril empezamos a familiarizarnos con la API de Twitter y a preguntarnos cómo capturar las conversaciones públicas que están ocurriendo en esta red social.
Entendimos rápidamente que necesitábamos un plan y una metodología para organizar nuestro corpus, conseguir nuestros objetivos, y dividir las diferentes tareas entre los miembros del equipo.
Los conjuntos de datos en inglés son numerosos (véase la publicación “Minería de Twitter y datasets sobre la Covid-19” del 23 de abril de 2020). Para empezar con un corpus más definido, decidimos centrarnos en conjuntos de datos en español, en general y por áreas. También quisimos dar un tratamiento especial al área del sur de Florida y abordarla desde una perspectiva bilingüe, debido a su diversidad lingüística, especialmente en inglés y español. Con esto en mente, una parte del equipo analiza las conversaciones en inglés y español, centrándose en el área del sur de Florida y Miami. Mientras que el equipo de CONICET se encarga de explorar los datos en español, es decir, de Argentina.
Para ampliar nuestro conjunto de datos, hemos decidido cosechar también todos los tweets en español, y crear conjuntos de datos específicos para otras partes de América Latina (México, Colombia, Perú, Ecuador), y España. Para una mejor organización de nuestro corpus, creamos una base de datos relacional que colecta la información relacionada con tweets específicos e ingiere automáticamente cientos de miles de tweets al día.
Tenemos diferentes queries o búsquedas en marcha, que corresponden a los conjuntos de datos en nuestra carpeta ‘twitter-corpus‘ en GitHub. En resumen, hay tres tipos principales de búsquedas:
- Búsqueda general para español cosechando todos los tweets que contienen los siguientes hashtags y palabras clave:
covid
,coronavirus
,pandemia
,cuarentena
,confinamiento
,quedateencasa
,desescalada
,distanciamiento social
- Búsqueda específica para inglés en Miami y el sur de Florida. Los hashtags y las palabras clave cosechadas son:
covid
,coronavirus
,pandemic
,quarantine
,stayathome
,outbreak
,lockdown
,socialdistancing
. - Búsquedas específicas con las mismas palabras clave y hashtags para español en Argentina, México, Colombia, Perú, Ecuador, España, utilizando la geolocalización del tweet cuando sea posible y/o la información del usuario
Las carpetas se organizan por día (YEAR-MONTH-DAY). En cada una hay 9 archivos de texto plano denominados “dhcovid”, seguidos de fecha (YEAR-MONTH-DAY), idioma (“en” para inglés y “es” para español), y abreviatura de región (“fl”, “ar”, “mx”, “co”, “pe”, “ec”, “es”):
dhcovid_YEAR-MONTH-DAY_es_fl.txt
: Conjunto de datos que contiene tweets geolocalizados en el sur de Florida. La geolocalización es rastreada por las coordenadas del tweet, por el lugar o por la información del usuario.dhcovid_YEAR-MONTH-DAY_en_fl.txt
: Este archivo contiene solo tweets en inglés que refieren al área de Miami y el sur de Florida. Esta elección se debe a la existencia de múltiples proyectos que recogen datos en inglés, nuestro proyecto está particularmente interesado en esta área debido a nuestra institución de origen (Universidad de Miami) y porque pretendemos estudiar las conversaciones desde un punto de vista bilingüe (EN/ES).dhcovid_YEAR-MONTH-DAY_es_ar.txt
: Conjunto de datos que contienen tweets geolocalizados en Argentina (por georreferencia, por lugar o por usuario).dhcovid_YEAR-MONTH-DAY_es_mx.txt
: Conjunto de datos que contienen tweets geolocalizados en México (por georreferencia, por lugar o por usuario).dhcovid_YEAR-MONTH-DAY_es_co.txt
: Conjunto de datos que contienen tweets geolocalizados en Colombia(por georreferencia, por lugar o por usuario).dhcovid_YEAR-MONTH-DAY_es_pe.txt
: Conjunto de datos que contienen tweets geolocalizados en Perú (por georreferencia, por lugar o por usuario).dhcovid_YEAR-MONTH-DAY_es_ec.txt
: Conjunto de datos que contienen tweets geolocalizados en Ecuador (por georreferencia, por lugar o por usuario).dhcovid_YEAR-MONTH-DAY_es_es.txt
: Conjunto de datos que contienen tweets geolocalizados en España (por georreferencia, por lugar o por usuario).dhcovid_YEAR-MONTH-DAY_es.txt
Este conjunto de datos contiene todos los tweets en español, independientemente de su geolocalización.
Desde el 23 de mayo, tenemos un total de:
- Español del sur de Florida (es_fl): 6,440 tweets
- Inglés del sur de Florida (en_fl): 22,618 tweets
- Español de Argentina (es_ar): 64,398 tweets
- Español de Mexico (es_mx): 402,804 tweets
- Español de Colombia (es_co): 164,613 tweets
- Español de Peru (es_pe): 55,008 tweets
- Español de Ecuador (es_ec): 49,374 tweets
- Español de España (es_es): 188,503 tweets
- Español (es): 2,311,482 tweets.
No incluimos los retweets, solo los tweets originales.
El corpus consiste en una lista de Tweet IDs. Una forma de obtener el tweet original es utilizando “hidratador de Twitter”, que toma el Id y descarga todos los metadatos en un archivo CSV.
Empezamos a recoger nuestros conjuntos de datos el 24 de abril de 2020. Para fechas anteriores (enero – 24 de abril), esperamos utilizar el conjunto de datos del PanaceaLab, debido a que es uno de los pocos que recoge datos en todos los idiomas, y esperamos conseguirlo en los próximos meses.
Hemos publicado una primera versión de nuestro conjunto de datos en Zenodo: Susanna Allés Torrent, Gimena del Rio Riande, Nidia Hernández, Romina De León, Jerry Bonnell y Dieyun Song. (2020). Digital Narratives of Covid-19: a Twitter Dataset (Version 1.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3824950
Traducción: Romina De León